Journal of Computational Physi&§0,338-372 (2001)

®
doi:10.1006/jcph.2001.6736, available online at http://www.idealibrary.col DE &l.

A Local Support-Operators Diffusion
Discretization Scheme for
Hexahedral Meshes

J. E. Morel, Michael L. Hall, and Mikhail J. Shashkov

University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E-mail: jim@lanl.gov; hall@lanl.gov; misha@t7.lanl.gov

Received June 15, 2000; revised January 24, 2001

We derive a cell-centered 3-D diffusion differencing scheme for unstructured hex-
ahedral meshes using the local support-operators method. Our method is said to
be local because it yields a sparse matrix representation for the diffusion equation,
whereas the traditional support-operators method yields a dense matrix represen-
tation. The diffusion discretization scheme that we have developed offers several
advantages relative to existing schemes. Most importantly, it offers second-order
accuracy on reasonably well-behaved nonsmooth meshes, rigorously treats material
discontinuities, and has a symmetric positive-definite coefficient matrix. The order of
accuracy is demonstrated computationally rather than theoretically. Rigorous treat-
ment of material discontinuities implies that the normal component of the flux is
continuous across such discontinuities while the parallel components may be either
continuous or discontinuous in accordance with the exact solution to the problem be-
ing considered. The only disadvantage of the method is that it has both cell-centered
and face-centered scalar unknowns as opposed to just cell-center scalar unknowns.
Computational examples are given which demonstrate the accuracy and cost of the
new scheme. (© 2001 Academic Press
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1. INTRODUCTION

The purpose of this paper is to present a local support-operators diffusion discretiza
for unstructured 3-D hexahedral meshes. We use the standard finite-element definitior
hexahedra [1]. The method that we present is a generalization of a similar scheme for
r — z quadrilateral meshes that was developed by Morel, Roberts, and Shashkov [2].
focusisthe discretization of the diffusion operator rather than any particular type of diffusi
equation. For demonstration purposes, we choose to solve a linear diffusion equation o
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form
—V.DV¢ = Q, 1)

where¢ denotes a scalar function that we refer to as the interi3itienotes the diffusion
coefficient, andQ denotes the source or driving function. It is sometimes useful to expre
Eqg. (1) in terms of a vector functioff,, that we refer to as the flux:

F=_-DVé. (2)

We have taken the terms “intensity” and “flux” from the radiative transfer literature [3], b
we have not explicitly considered the radiative diffusion equation because the subjec
this paper relates only to the discretization of the diffusion operator. Our discretization
be used in any type of diffusion calculation, e.g., time-dependent, steady-state, linea
nonlinear.

We define a cell-centered diffusion discretization scheme as one that numerically |
serves the integral of Eq. (1) over each spatial cell. In particular, substituting from Eqg.
into EqQ. (1) and integrating that equation over a cell volume, we obtain

]gvlf-ﬁdAz/\;QdV, (3)

wheredV denotes the cell surfacé denotes the outward-directed unit surface normal, an
V denotes the cell volume. Note that we used the divergence theorem to convert the
integral in Eqg. (3) from a volume integral to a surface integral. In physical terms, Eq. {
generally represents a statement of particle or energy conservation over the cell. Thus
can simply state that cell-centered schemes (as we define them) are conservative ovel
mesh cell.

If one considers only nonorthogonal meshes with material discontinuities, existing vert
centered diffusion discretizations are generally more advanced than cell-centered discre
tions. This is primarily so because of the enormous success of Galerkin finite-elem
methods [1] and variants of those methods. Nonetheless, there are applications for w
cell-centered schemes appear to yield superior accuracy relative to vertex-centered sche
For instance, when coupling radiation diffusion calculations with cell-centered hydroc
namics calculations, a cell-centered diffusion scheme is highly desirable because it av
certain difficulties associated with mapping between vertex-centered and cell-centered
terial temperatures [4].

The discretization scheme that we have developed is cell-centered, but it has inter
unknowns at both cell centers and face centers. It can be applied on unstructured he»
dral meshes. It yields second-order accurate solutions for the intensities on both smoott
nonsmooth meshes even when material discontinuities are present, and it generates a
symmetric positive-definite coefficient matrix. Second-order convergence has been der
strated computationally on nonsmooth meshes, but it has not been theoretically provel

The literature relating to cell-centered diffusion discretization schemes for nonorthogo
hexahedra is not particularly extensive. One of the earliest relevant papers appeared ¢
10 years ago. In particular, Rose developed a cell-centered hexahedral-mesh discretiz
scheme for the Laplacian operator [5]. The diffusion operator that we consider degenerat
the Laplacian operator when the diffusion coefficiendentically one Unlike our scheme,
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which has only the normal component of the current on each cell face, Rose’s scheme
three components of the flux on each cell. Furthermore, the flux is continuous across ¢
cell face in Rose’s scheme, whereas only the normal component of the flux is continuou
our scheme. A central aspect of Rose’s method is the preservation of an integral expres
thatis referred to as an energy principle. Our method is actually based upon the preserv:
of an integral identity. The energy principle used by Rose is not the same as the intel
identity that we use, but they are related. In particular, the principle used by Rose car
derived from the diffusion equation together with the integral identity that we use. Ro
presented a proof that his hexahedral-mesh method converges with second-order acct
but he provided computational results only for a-1D version of his method. Arbogast
et al. [6] have recently developed a cell-centered expanded mixed finite-element met
for solving the tensor diffusion equation on general meshes (including hexahedral mest
Their method has only cell-center intensity unknowns if both the mesh and the diffusi
tensor are smooth, but additional face-center intensities are required wherever the me:
the diffusion tensor is nonsmooth. The coefficient matrix generated by their method is alw
symmetric positive definite (SPD). The method of Arbogdsl. actually shares some of
the best properties of the standard mixed finite-element method and the hybrid mixed fir
element method. Standard mixed finite-element diffusion methods have only cell-cer
intenstities, but this is achieved at the cost of solving a computationally expensive sad
point linear system. The saddle-point system can be avoided by using the hybrid mi
finite-element approach, which generates a symmetric positive-definite coefficient matri
the expense of additional face-center unknowns. The method of Arleigdgields an SPD
coefficient matrix similar to the mixed hybrid method but it can sometimes require far few
unknowns. Although they proved several convergence theorems for their hexahedral-n
method, they had to assume certain mesh smoothness properties. Furthermore, Arbi
et al. provided computational results only for a 2-D version of their method.

Our local support-operators method is similar to hybrid mixed finite-element metho
in that it is cell-centered, it has both cell-center and cell-face intensities, and it produ
a coefficient matrix that is symmetric positive-definite. However, our scheme is func
mentally a finite-volume technique since basis functions never appear in our formalis
Nonetheless, a strong connection does exist between our method and hybrid mixed fi
element methods. This connection arises from the fact that the integral identity that is
basis of the support-operators method is in fact a weak form of Eq. (2). Hybrid mix
finite-element methods satisfy a weak form of Eq. (2) on specific finite-dimensional fur
tion spaces, whereas the support-operators solution satisfies a weak form of Eq. (2)
purely discrete sense. The global support-operators method has recently been refo
lated to include the use of vector basis functions on general quadrilateral meshes [7].
basis-function version of the method recovers the finite-difference version when exact
tegration is replaced with certain approximate quadratures. The basis-function formula
appears to be about three times more accurate than the finite-difference formulation
both formulations exhibit the same order of convergence. Because of the complexity of
2-D vector basis functions, the authors of [7] conclude that the improvement in accur:
does not justify the added complexity of the basis-function support-operators method.
feel that our local support-operators method for general hexahedral meshes is much
pler than hybrid mixed finite-element methods precisely because the vector basis funct
for hexahedral meshes are extremely complicated [6]. More importantly, our local supp
operators method converges on nonsmooth hexahedral meshes, but we have not been:
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identify any hybrid mixed finite-element methods that have been shown to converage on
meshes.

To summarize, the following combination of characteristics appear to be unique to
support-operators diffusion discretization scheme:

e Itis a cell-centered discretization for unstructured hexahedral meshes.

e It has been computationally demonstrated that the scheme gives second-order
vergence of the intensity on both smooth and nonsmooth meshes both with and witt
material discontinuities.

e It generates a sparse SPD coefficient matrix.

e Itis equivalent to the standard 7-point cell-center diffusion discretization scheme
when the mesh is orthogonal.

We stress that some of the latest hybrid finite-element methods for hexahedral me:
require a certain degree of mesh smoothness for convergence [6], whereas our me
converges on nonsmooth grids. Thus, our method clearly represents a valuable altern
to hybrid mixed finite-element methods.

The remainder of this paper is organized as follows. We first explain the central the
of our local support-operators method, and apply it to a nonorthogonal hexahedral mes
Cartesian geometry. We next describe an approximate version of our scheme that we u
a preconditioner in conjunction with a conjugate-gradient solution technique [9]. Final
computational results are given, followed by a summary and recommendations for ful
work.

2. THE SUPPORT-OPERATORS METHOD

In this section we describe the support-operators method. It is convenient at this p
to define a flux operator given byD%. The diffusion operator of interest is given by the
product of the divergence operator and the flux opera{&:- DV. The support-operators
method is based upon the following three facts:

e Given appropriately defined scalar and vector inner products, the divergence and
operators are adjoint to one another.

e The adjoint of an operator varies with the definition of its associated inner produc
but is unique for fixed inner products.

e The product of an operator and its adjoint is a self-adjoint positive-definite operatc

The mathematical details relating to these facts are given in [10]. As explained in [10],
adjoint relationship between the flux and divergence operators is embodied in the inte
identity

% ¢|—T-ﬁdA—/ D’lﬁ-D%¢dV=/¢§-HdV, (4)
Vv \% \

whereg is an arbitrary scalar functioh is an arbitrary vector functioi,denotes a volume,
dV denotes its surface, afidlenotes the outward-directed unit normal associated with th
surface. This identity can be derived from the differential identity [11],

V.-@H)=¢V-H+H- Vo, (5)
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and the divergence theorem [11],

/%.Hdvz/ H-AdA (6)
\ Vv

Our support-operators method can be conceptually described in the simplest term
follows:

1. Define discrete scalar and vector spaces to be used in a discretization of Eq. (4).

2. Fully discretize all but the flux operator in Eq. (4) over a single arbitrary cell. The flu
operator is left in the general form of a discrete vector as defined in Step 1.

3. Solve forthe discrete flux operator (i.e., for its vector components) on a single arbitr:
cell by requiring that the discrete version of Eq. (4) hold for all elements of the vector spe
defined in Step 1.

4. Combine the flux operator with the balance equation to obtain a discretization
Eqg. (1) on a single mesh cell. This provides an equation for each cell-center intensity.

5. Connect adjacent mesh cells in such away as to ensure that Eq. (4) is satisfied ove
whole grid. This simply amounts to enforcing continuity of intensity and continuity of th
normal flux component at the cell interfaces. Because each cell face on the mesh interi
shared by two cells, there are initially two distinct intensities at the center of each of the
faces. The continuity of intensity condition reduces each such pair of intensities to a sin
intensity. The continuity of flux condition provides an equation for each of the face-cen
intensities on the mesh interior.

6. Use the analytic boundary conditions to obtain an expression for a “boundary nort
flux component” for each cell face on the mesh boundary. Equate this “boundary nort
flux component” to the normal flux component obtained via the flux operator on ea
boundary cell face. This provides an equation for each face-center intensity on the ol
mesh boundary, and completes the specification of the diffusion matrix.

To make this process concrete, we next generate the diffusion matrix for a hexahe
mesh in Cartesian geometry. To simplify the presentation, we assume a logically rectang
mesh. However, we stress that our discretization scheme can be used with unstruct
meshes as well. The assumption of a logically rectangular mesh merely simplifies
notation and mesh indexing. Our first step is to define that indexing. For reasons explai
later, both global and local indices are used. Let us first consider the global indices.
cell centers carry integral global indices, e.g.j,); cell vertices carry half-integral global
indices, e.g.(i + 1, j + 3,k + 1); and face centers carry mixed global indices compose
of both integral and half-integral indices, e.q.;+ % i, K). The global indices for four of
the vertices associated with cell j; k) are illustrated in Fig. 1.

Local indices allow us to uniquely define certain quantities that are associated witl
vertex or face centaanda cell. For instance, the local indices for the six faces associate
with each cell are given by L, R, B, T, D, and U, which denote Left, Right, Bottom, Toy
Down, and Up respectively. This local face indexing is illustrated for ¢gjl| K) in Fig. 2
and Fig. 3 together with a mapping between the local indices and the corresponding gl
indices. Note that the indejincreases when moving from Left to Right, the injléxcreases
when moving from Bottom to Top, and the indeincreases when moving from the Down
to Up. The local indices for the vertices follow directly from the face indices in that eac
vertex is uniquely shared by three faces of the cell. Thus, the vertex shared by the Ri
Top, and Up faces is denoted by the index RTU. This vertex is illustrated in Fig. 4.
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FIG. 1. Globalindices for four vertices associated with cgl] (k).

The vector and matrix notation used from this point forward in this paper is as follow
Each vector is denoted by an uppercase symbol and the components of that vecto
denoted by the corresponding lowercase symbol. An arrow is placed over the upper
symbol if the vector is physical, while a chevron is placed above the uppercase symb
the vector is algebraic. Each matrix is denoted by a boldface uppercase symbol anc
elements of that matrix are denoted by the corresponding lowercase symbol.

i
1
S S

@ @12 K
- (0, F1/2, K

@ -, §, k1/2)

FIG. 2. Local and global indices for three of six face centers associated with gek)
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@-‘------ 3

@ - @12, 4, K
@ -, #1112, K)
@ - (i, | k+112)

FIG. 3. Local and global indices for three of six face centers associated withi gek)

The intensities (scalars) are defined to exist at both cell ce@fg{(:, and on the face
centerspl; . ¢ . 62 k> Bk ).k @1 k- AS previously noted, the use of local indices
implies that a quantity is uniquely associated with a single cell. For instance, unless i
otherwise stated, one should assume #faf, # ¢ 1 | -

Vectors are defined in terms of face-area components located at the face cghters:
fiR i 24 £l fi8 4 £ k. wheref; , denotes the dot product &F with the outward-
directed area vector located at the center of the left face ofi cglk. The other face-
area components are defined analogously. The area vector is defined as the integral

FIG. 4. Vertex shared by the Right, Top, and Up faces having local index RTU.
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outward-directed unit normal vector over the face, i.e.,
A= 74 AdA (7)

whereri is a unit vector that is normal to the faces at each point on the face. The aver
outward-directed unit normal vector for the face is defined as follows:

n) = —, 8
() AT ©)

where || A|| denotes the magnitude (standard Euclidian normﬂoEquation (8) can be
used to convert face-area flux components to face-normal components if desired, e.g.,

- - A
Ff)y=F
1Al

f
= ——. 9
Al ©

Note that||A| is equal to the face area only when the face is flat. Interestingly, the tr
face areas never arise in our discretization scheme. Since it takes three componer
define a full vector, the full vectors are considered to be located at the cell vertic
FLBQ, FRER FLTD. FRTR FLBU FRBY FLTY. FRTY. Each vertex vector is construct-
ed using the face-area components and area vectors associated with the three face
share that vertex. For instance,

Ete fL(AB x AD) fB(AP x AL) fO(AL x AB) 10)

WKTUALU(AB x AD) | AL . (AD x AL) | AD. (AL x AB)’
It is convenient for our purposes to define an algebraic veBtpconsisting of the three
face-area components associated with the physical véetarg.,

A~ t
FLep = (fi[_j,k’ fi?j,k’ fin,k) , (11)

where a superscript “t” denotes “transpose.” The three face-area components assoc
with the Right-Top-Up vertex are illustrated in Fig. 5. The other vertex vectors are defin
in analogy with Egs. (10) and (11).

The next step in our support-operators method is to discretize Eq. (4) over a sin
arbitrary cell in a particular manner. Specifically, we explicitly discretize all but the flu
operator, which is expressed in an implicit form consistent with our choice of discre
vector unknowns. We assume indicesiof, k for the arbitrary cell, but suppress these
indices whenever possible in the discrete approximation to Eq. (4) that follows. We fi
discretize the surface integral

}1{ dH -HdA~ ¢ h" + ¢RhR 4+ ¢BhB + ¢ ThT + ¢PhP + ¢VhY. (12)
EAY
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FIG.5. Three face-center face-area components defining the flux vector at vertex RTU.

Next, we approximate the flux volumetric integral

/ —-D'H.DV¢dV
\%

~ Dfl(l__iLBD A IE'LBD)VLBD + Dfl(H'RBD_ IE'RBD)VRBD+ Dfl(H'LTD_ IfLTD)\/LTD
+ D_l(l:iRTD' ﬁRTD)VRTD+ D_l(HLBU . ﬁLBU)VLBU + D_l(HRBU' ﬁRBU)VRBD
+ D_l(l‘_iLTU- ﬁLTU)VLTU + D_l(HRTU~ ﬁRTU)VRTU’ (13)

whereFBD denotes-DV¢ at the Left-Bottom-Down vertex, and-BP denotes the vol-
umetric weight associated with the Left-Bottom-Down vertex. The remaining flux vecto
and vertex volumetric weights are analogously indexed. The choice of weights is one of
many free parameters in the support-operators method. For reasons explained in Secti
we define our weights in terms of triple products. Specifically, each vertex weight is initial
given by one-eighth the triple product associated with the vertex. For instance, using
local vertex indexing shown in Fig. 2, the volumetric weight for the Left-Bottom-Dowr
vertex is given by

1o - .
VD = §R1,2 X Ri3- Ryg, (14)

where I?ei,j denotes the vector from vertéxo vertex j. These triple product weights do
not sum to the total volume of the hexahedron unless the hexahedron is a parallelepi
Thus, we normalize the triple product weights so that they sum to the correct total volur
In particular, each triple-product weight is multiplied by the ra#ig Vs, where, is the
total volume of the hexahedron algis the sum of the triple product weights.

One can evaluate the dot products in Eq. (13) using Eqg. (10), but we find it better for
purposes to evaluate them with the algebraic face-area flux vectors defined by Eq. (11).
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is achieved by first transforming the face-area vectors to Cartesian vectors and then ta
the dot product. Rather than explicitly defining the matrix that transforms face-area veci
to Cartesian vectors, we explicitly define its inverse. The desired transformation matrix
then be obtained by either algebraic or numerical inversion. For instance, let us conside
Left-Bottom-Down vertex vectors. We denote the matrix that transforms face-area vec
to Cartesian vectors a&-BP. Its inverse is the matrix that transforms Cartesian vectors 1
face-area vectors,

|:|LBD _ [ALBD]leiLBD (15)
whereH denotes a Left-Bottom-Down face-area flux vector,
H = (h', hB hP)t, (16)

andH denotes a Left-Bottom-Down Cartesian flux vector,

H = (W, hY, hd)t, (17)
and
A &y A
(AP = a? af aP|. (18)
a? oy ap

wherea. denotes the x-component of the area vector associated with the left face. -
remaining components of the matrix are defined analogously. Transforming the face-:
vector for the Left-Bottom-Down vertex, we obtain

ﬁLBD . IfLBD — ALBD|:|LBD . ALBD IfLBD
— |:| LBD | SLBDﬁ LBD’ (19)
where
SLBD — [ALBD]IALBD' (20)

Following Eg. (20), we now rewrite Eq. (13) in terms of face-area vectors as

/ —D'H.-DVgdV
\%
~ D—l(|:| LBD | SLBDIf LBD)VLBD + D_l(l:' RBD | SRqu RBD)VRBD
+ D71(|:| LTD | SLTDIE LTD)VLTD + D71(|:| RTD | SRTD'f RTD)VRTD
4 D—1(|:| LBU SLBUIE LBU)VLBU 4 D_l(l:i RBU | SRBU'E RBU)VRBU
+ D—l(|:| LTU SLTUﬁ LTU)VLTU + D—l(|:| RTU SLTUIf RTU)VRTU. (21)
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Although we assume a single diffusion coefficient in each cell in this paper, we note tl
our scheme can accommodate a different diffusion coefficient for each vertex. In particu
Eq. (21) becomes

/ —-DH . DVe¢dV
\%

~ DLBD’1(|:| LBD | SLBleLBD)VLBD + DRBITI(':'RBD . SRquRBD)VRBD
+ DLTD’I(HLTD . SLTDIfLTD)VLTD 4 DRTET1(|:|RTD. SRquRTD)VRTD
+ DLBU’l(I:ILBU . SLBU'fLBU)VLBU + DRBUl(I:IRBU . SRBU‘fRBU)VRBU
+ DLTU’I(F'LTU . SLTUIfLTU)VLTU + DRTUl(F'RTU . SLTUIfRTU)VRTU. (22)

Although we assume a scalar diffusion coefficient in this paper, we note that our scheme
accommodate a tensor diffusion coefficient. Specifically, with a tensor diffusion coefficie
at each vertex, Eq. (21) becomes

/ —-D'H.DV¢dV
\

~ (FILBD . GLBDIfLBD)VLBD + (|:|RBD . GRquRBD)VRBD + (|:|LTD A GLTDIfLTD)VLTD
+ (|:|RTD . GRquRTD)VRTD_’_ (|:|LBU A GLBUIfLBU)VLBU 4 (|:| RBU | GRBL,*fRBU)VRBU
+ (H LTU | GLTUIfLTU)VLTU + (|:| RTU | GLTUIfRTU)VRTU (23)

where
GLBD — [ALBD]t[DLBD]—lALBD (24)

andDBP s the Left-Bottom-Down diffusion tensor in the Cartesian basis. The remainir
G-matrices are defined analogously. The diffusion tensor must be symmetric positi
definite to ensure that its inverse exists and that the coefficient matrix for our diffusi
scheme is symmetric positive-definite.

Finally, we approximate the divergence volumetric integral

/cb%-Hde¢>°[hL+hR+hB+hT+hD+hU]- (25)
\%

Equations (12), (21), and (25) are certainly not unique, but they are fairly straightforwa
For instance, Eq. (12) represents a face-centered second-order approximation to a su
integral. Equation (21) represents a vertex-based volumetric integral consisting of a «
product contribution from each pair of vertex vectors. Equation (25) is a particularly simy
second-order approximation which gives all of the weight to the cell-center vatuebile
using a surface-integral formulation f&r- H that is analogous to the surface-integral usec
in Eq. (12).

Substituting from Eqs. (12), (21), and (25) into Eq. (4), we obtain the discrete version
Eq. (4):
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¢LhL +¢RhR +(]§BhB +¢ThT +¢DhD +¢UhU + Dfl(HLBD . SLBleLBD)VLBD
+D—1(|:|RBD . SRqu‘RBD)VRBD+ D—1(|:|LTD . SLTDIfLTD)VLTD
_}_D—l(':'RTD. SRqu‘RTD)VRTD+ D_l(l:l LBU | SLBUIfLBU)VLBU
_'_Dfl(':'RBU. SRBL‘ERBU)VRBU + D71(|_”| LTU | SLTUIfLTU)VLTU
+D I (HRTV. STURERTYVRTU = ¢Clht + hR 4 h® 4+ hT 4 hP 4+ hY). (26)
Note that Eq. (26) defines the discrete inner products, discussed in[10], that are assoc
with the adjoint relationship between the divergence and gradient operators. We can
use this relationship to solve for the flux operator components by requiring that the resul
discretized identity hold foall discreteH values. In particular, the equation for the face-
area component df on any given cell face is obtained from Eq. (26) simply by setting th
same face-area componentkdfon that face to unity and setting the remaining face-are
components oH on all the other faces to zero. For instance, we obtain the equation |

fL from Eq. (26) by settingi- to unity and all the other face-area componentiﬁoi.e.,
hR hB, hT,hP, hY tozeroas

¢L + D—l (SII:BLDf L + Stl?é)f B + st?gf D)VLBD + D—l (SII:TIE)]: L + SIET_II_DfT + SI[TDDf D)VLTD
£ D7 (SR SV 4 SRHY) VI D (ST T
+sgfY) VY = 6C, (27)
wheres;8° denotes thel(, L) element of the matrix8-B° defind by Eq. (20), and the
remainingS-matrix elements are defined analogously.

The equations for the face-area flux components, i.e., Eq. (27) and its analogues fo
Right, Bottom/Top, and Down/Up faces, can be expressed in matrix from as

WFE = AD, (28)
where
F=(fL R £B fT O fUyt, (29)
and
AD = (¢° — 9", ¢ — ¢R, 9% — 9%, ¢° — 97,0 — ", 6% —¢")". (30

To obtain a matrix that gives the face-center components of the flux operator in terms of
face-center and cell-center intensities, one need simply invert#h@ @atrix in Eq. (28):

F—WAD. (31)

Since it is not practical to perform this inversion algebraically, we perform it numericall
Thus, we cannot give an explicit expression for the matfidNonetheless, it can be shown

that it is an SPD matrix (see the Appendix). In addition, if we assume an orthogonal me
W becomes diagonal and can be trivially inverted. For instance, under this assumpt
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Eq. (27) becomes

AXAYAZ

¢"+D N AyAD P ——

= ¢c, (32)
where we have also assumed that the indicg, correspond to the spatial coordinates
y, z, respectively. Solving Eq. (32) fof', we obtain

L 2D L C
fr=—1 0" —e%ayaz (33)

which is exact for @ that is linearly dependent upon

Having derived Eq. (31), we can construct the discrete equation for the cell-center int
sity in every cell. Each such equation represents a discretization of Eq. (3), i.e., a bale
equation for the cell. Furthermore, each balance equation uses a discretization for the
vergence of the flux that is identical to that used in Eq. (26). In some sense, this is
point at which we obtain a diffusion operator by combining our discrete divergence a
flux operators. Specifically, the equation #r is

fl fREFB4 T 4 04 fY = QCv, (34)

whereV denotes the total volume of the cell, the face-area flux components are expres
in terms of the intensities via Eq. (31), a@f denotes the source or driving function
evaluated at cell-center. Equation (34) contains all of the intensities in gek), Thus, it
has a 7-point stencil.

Now that we have defined the equations for the cell-center intensities, we must next de
equations for the face-center intensities. Our local indexing scheme admits two intensi
and two face-area flux components at each face on the mesh interior. In particular, the
one intensity and one flux component from each of the cells that share a face. For insta
the cell face with global inde& + % j, k) is associated with the two intensiti@'q,{?j’k and
i1 j.x and the two face-area flux componert§, , and f';, ; .. We previously obtained
the flux components in terms of the intensities by forcing Eq. (26), a discrete version
Eq. (4), to be satisfied on each individual cell for all discrete scalars and vectors. We n
obtain equations for the interior-mesh face-center intensities by requiring that this iden
be satisfied over the entire mesh for all discrete scalars and vectors.

When Eq. (26) is summed over the entire mesh, the two volumetric integrals are natur
approximated in terms of a sum of contributions from each individual cell. However, a va
approximation for the surface integral in Eq. (26) will occur if and only if contributions tc
the surface integral from each individual cell cancel at all interior faces, thereby resulting
an approximate integral over the outer surface of the mesh. By inspection of Eq. (26), it
be seen that this will be achieved by requiring both continuity of the intensity and continu
of the face-area flux component at each interior cell face. In particular, we require that

Bk = bk = btk (35)
¢iT,j,k = ¢i‘,3j+1,k = ¢i,j+%,k, (36)
Pioike = B ket = Bijer 1 (37)
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R+ fhjk =0, (38)
fl .0k + 1:i,Bj-&-l,k =0, (39)
fi,j,k + fin,k+l =0, (40)

where the indices in Egs. (35) through (40) take on all values associated with interior
faces, and the flux components in Egs. (38) through (40) are expressed in terms of intens
viaEq. (31). One would expect that the continuity of the face-area flux components expres
by Egs. (38) through (40) would require that thiferenceof the components be zero rather
than thesumof the components. However, one must remember that each of the compone
is defined with respect to an area vector that is equal in magnitude but opposite in direc
to that of the other component.

Equations (35) through (37) establish that there is only one intensity unknown associ
with each interior-mesh cell face. Thus, as shown in Egs. (35) through (37), each s
intensity can be uniquely referred to using a global mesh index. The equations for th
intensities are given by Eqgs. (38) through (40). For instance, Eq. (38) is the equation
$irtjk 1N general, Eq. (38) contains only and all of the intensities in cellg, k) and
(i + 1, j,K). Thus, it has a 13-point stencil. The only intensity shared by these two cells
i 1.jk- Thus, inacertain sense it can be said mgﬁ « Is “chosen” to obtain continuity
of the face-area flux components on cell- falce(z, is k) The properties of Egs. (39) and
(40) are completely analogous to those of Eq. (38).

If the mesh is orthogonal, Eqgs. (38) through (40) simplify to such an extent that th
relate each interior-mesh face-center intensity to the two cell-center intensities adjacel
it. This enables the face-center intensities to be explicitly eliminated, resulting in the st
dard 7-point cell-centered diffusion discretization that is both SPD and monotone (hav
strictly positive diagonal elements and strictly nonpositive off-diagonal elements.) This
completely analogous to the 2-D case discussed in detail in [2]. However, if the mesl
nonorthogonal, the face-center intensities cannot be eliminated, and Egs. (38) through
must be included in the diffusion matrix. In this case, these equations must be reverse
sign to obtain a symmetric diffusion matrix,

— = fh k=0, (41)
1:| ] k — firﬂj-&—l,k =0, (42)

Having defined the equations for the cell-center and interior-mesh face-center intensi
we need only define the equations for the face-center intensities on the outer mesh bour
to complete the specification of our diffusion discretization scheme. Cell faces on the ot
boundary are associated with only one cell. Thus, there is only one face-center inter
and one face-area flux component associated with each such face. The equation for
boundary intensity is very similar to that for each interior-mesh face-center intensity
that it expresses a continuity of the face-normal flux component. The only difference
the boundary equations is that the analytic boundary condition for the diffusion equat
is used to define a “ghost-cell” face-normal flux component that must be equated to
standard face-normal flux component defined by Eq. (31). A ghost cell is a nonexist
mesh cell that represents a continuation of the mesh across the outer mesh boundan
instance, assuming that the left face of cell, k is on the outer boundary of the mesh and
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its remaining faces are on the interior of the mesh, the ghost cell “adjacent” to ¢ell 1,
carries the indices Q, k.

The analytic diffusion boundary condition of interest to us is the so-called “extrapolate
boundary condition. This condition is of the mixed or Robin type and can be expressec

¢+ d°Ve - A = ¢°, (44)

whered® is called the extrapolation distancg$ is called the extrapolated intensity (a
specified function), and denotes an outward-directed unit normal vector. Equation (4
is satisfied at each point on the outer surface of the problem domain. Of course, the va
of the parameters®dand¢® may change as a function of position. One obtains a vacuul
boundary condition whep® = 0, a source condition whepf is nonzero, and a reflective
(Neumann) condition whe#® = ¢. The extrapolated boundary condition is said to be «
Marshak condition wheneve® = 2D.

We begin the derivation of the ghost-cell face-area flux component by substituting frc
Eqg. (2) into Eq. (44)

¢— < F9-fi=9¢°, (45)

ol

whereF is the flux vector associated with a ghost cell. Next we recognize that the outwa
directed unit normal vector for a ghost-cell must be identical to an inward-directed u
normal vector on the outer surface of the problem domain. Thus,

A9 — A, (46)

where 9 denotes a ghost-cell outward-directed unit normal vector. Substituting fro
Eqg. (46) into Eqg. (45), we obtain

de -
Next, we solve Eq. (47) for the outward-directed flux component associated with a gh
cell:

S D
FORI = (0°— ). (48)

Now let us assume that the left face of cellj 1k is on the outer boundary of the mesh with
its remaining faces on the mesh interior. The ghost cell whose right face is identical to
left face of cell 1,j, k carries the indices §, k. The intensity on the left face of cell ({,

k) is D1k and the face-area flux component on that facéflpk Evaluating Eq. (48) at
the center of face%( i, k) and multiplying the resulting expression by the magnitude of the
outward-directed area-vector on that face associated with gek,we obtain the desired
expression for the ghost-cell face-area flux component,

Dyjk

dO,j.k

R _
fO,j,k_ -

(@350 — 05 1) 1A Ll (49)
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where the extrapolated intensity and the extrapolation distance are assumed to carn
ghost-cell index.

We next obtain the equation fcbr%,j,k by requiring that the Right and Left face-area flux
components for cells (¢, k) and (1,j, k), respectively, sum to zero:

—foix— fLjx=0. (50)

Note that Eq. (50) is identical to Eq. (41) with the latter equation evaluatee-dd. Thus,
Egs. (41) through (43) providal face-center intensity equations with the caveat that whe
an intensity is on the outer mesh boundary, the associated ghost-cell flux component mu
defined via the boundary condition rather than Eq. (31). Note that Eq. (50) couples all of
intensities within a cell and therefore has a 7-point stencil. This completes the specifica
of our diffusion discretization scheme.

To summarize,

e The face-area flux components for each cell are expressed in terms of the intens
within that cell via Eq. (31).

e The discrete equation for each cell-centered intensity is given in Eq. (34).

e The equations for the interior-mesh face-centered intensities are given in Egs. (
through (43).

e The equation for a face-center intensity on the outer mesh boundary is given
Egs. (49) and (50) when the boundary face is the Left face of a cell. Analogous eq
tions for the other five cases are easily derived using Egs. (41) through (43) and Eq. (4

We have already shown that our diffusion matrix is sparse. It is also symmetric positi
definite. We demonstrate this latter property in the Appendix. If the mesh is orthogor
the W-matrices, defined by Eqg. (31), become diagonal, and the face-center intensities
be locally eliminated from the cell-center/face-center system. This results in a pure ¢
center diffusion discretization that is identical to the standard 7-point cell-center diffusi
discretization scheme [8]. In Section 4 we describe a preconditioner that exploits the
that the face-center intensities can be locally eliminated whewtimeatrices are diagonal.

3. CHOICES IN THE SUPPORT-OPERATORS METHOD

In this section we discuss some of the choices that we have made in formulating
support-operators method. As previously noted, the general principle upon which
support-operators method is based can be applied with a variety of locations and re
sentations for the intensity and flux unknowns. There is a great deal of freedom in
choice of numerical parameters used in evaluating the volumetric and surface integl
However, the accuracy of a scheme is highly dependent upon the choices that are max

For instance, rather than define the fluxes in terms of face-normal components on ¢
face, one can simply place an independent set of Cartesian flux components at each ve
This yields a total of 24 flux unknowns for a hexahedron rather than the six unknow
in our scheme. However, schemes constructed in this way generally do not converge
nonsmooth meshes. The use of face-normal components appears to be necessary to a
convergence on such meshes.

On a general hexahedron, there is even some choice in defining the face-normal c
ponents. For instance, the surface normal varies across a hexahedral face. Thus, one
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FIG. 6. Sub-hexahedron associated with vertex.

choose a particular representation for the “average face normal.” We have chosen to de
this quantity in terms of the area vector, but other choices are clearly possible.

The vertex volumetric weights used in the flux volumetric integral can also be chosen i
variety of ways. We have investigated alternatives to the normalized triple-product weigt
In particular, we considered unnormalized triple-product weights, sub-hexahedron weig
and simple one-eighth weights. Sub-hexahedron weights are defined by the volume ©
associated sub-hexahedron. The sub-hexahedra are obtained by using four straight lir
connect each face center with the four edge centers adjacent to it, and by using six stre
lines to connect the cell center with the six face centers. A sub-hexahedron is illustrate
Fig. 6. Although it may not be obvious, each other face of each sub-hexahedron coinci
with a face of the hexahedron. Thus, the volumes of the sub-hexahedra always sum tc
total hexahedron volume. This would seem to be the most natural choice for the vel
volumetric weights. The one-eighth weights are identical for a given hexahedron and
obtained by dividing the total volume of the hexahedron by one-eighth.

Computational testing indicates that the sub-hexagon and one-eighth weights are
cidedly inferior to the triple-product and normalized triple-product weights. In particula
the triple-product and normalized triple-product weights both yield a second-order-accul
diffusion discretization, whereas the sub-hexagon and one-eighth weights yield a first-ol
accurate diffusion discretization. Although they both give second-order accuracy, the r
malized triple-product weights seem to be slightly more accurate than the triple prod
weights. This is why we use the normalized triple-product weights.

4. SOLUTION OF THE EQUATIONS

We use a preconditioned conjugate-gradient method [9] to solve our discretized diffus
equations. The preconditioner is completely analogous to that used for the 2-D local supy:
operators scheme [2]. It is obtained simply by setting the off-diagonal elements of 1
S-matrices, defined by Eq. (20), to zero. This caused¥hmatrices, defined by Eq. (31),
to be diagonal and effects a huge simplification in the algebraic structure of the inten:
equations. In particular, this makes it possible to locally eliminate the face-center intensi
from the cell-center/face-center system, resulting in a pure cell-center diffusion discreti
tion that is both SPD and monotone. For instance, if we set the off-diagonal elements of
S-matrices to zero, Eq. (27) and its analogue féryield

2D'+1.‘,k
flin = —ﬁ(@%,j,k — PitL k) (51)
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and
R
fi,j_k = _—A-R . (¢|+2 ik~ ¢i,j,k), (52)

respectively, where

AiLJrl,j,k =2 [SII:BDVLBD LTDVLTD+ SLBUVLBU 4 SLTUVLTU} Lk (53)
and
Ai',qj,k — Z[SE’BADVRBD—F SS:I'SVRTD RBUVRBU 4 SRTUVRTU]I ik (54)
Substituting from Egs. (51) and (52), into Eq. (41), we get the equatiof fr%fj,k3
2D jk(Biy1jx— k) 2Disajk(diir jx — Bisnjk)
= + = =0. (55)
AT AL
ij.k i+1,j,k

Solving Eq. (55) forqu%,j,k, we get

Dit1,jk Dijk = Dit1jk
Gz ik = | Piken + dianix : = + = |. (56)
. a AR L A|+1]k Ail,?j,k AH—le

Thus, we see from Eq. (56) that neglecting the off-diagonal elements @&-thatrices
makes each interior-mesh face-center intensity a weighted-average of the two cell-ce
intensities adjacent to it. Substituting from Eq. (56) into Egs. (51) and (52) we find that t
face-area fluxes on the right and left faces of cellg,(k) and { + 1, j, k), respectively,
can be expressed in terms of a difference between the cell-center intensities in those
cells,

Di+1,j,k
fiiRi,k = fllrkl k= Tx (i1 ik — Dijk) (57)
i+3.).k
where
-1
AR AL
Diiii= ik LK + A , 58
i+3,].k (Di,j,k Di+l.j,k ( i,j.k I+1Jk) ( )
and
AR+ ARk
AH—%,j.k — % (59)

Thus, each interior-mesh face-area flux can be expressed in terms of a difference bet
the two adjacent cell-center intensities. Substituting from Eq. (57) (and its analogues for
other face-area fluxes) into the balance equation, Eq. (34), we obtain a 7-point cell-ce
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diffusion discretization for each cell on the mesh interior. In particular, the balance equat
for cell (i, j, k) (and the equation fap; j k) is

D+ K D,_ ik D. +ik
AI & (Pi+1,j.k — Pi,jx) + A ] (@i,jk — Di-1jk) — AI L (Pi,j+1.k — Hi,jk)
|+ L0,k |——,j,k i,]+ k
Di i 1k Di i kst
+ AI =2 (@i jk — Dij—1k) — AI'J i (@i, j. k1 — Dijk)
i,j—1.k ij.k+3
Di
+ il (¢|Jk_¢|1kl)—Q|]kV|Jk (60)
A|.J,k 3

To obtain the analogue of Eq. (57) for a cell face on the outer mesh boundary, we ac
consider a cell (1j, k), whose left face is on the boundary with its other faces in the mes
interior. Substituting from Egs. (49) and (51) into Eqg. (50), we obtain the equatidnéfgg,

LK (@1 — 9 1k —drik) =0, (61)
Ag{j’k ( 3] O,],k) Al]k ( J I )
where
205
A== (62)
A1 kll

Solving Eq. (61) forqbé,j,k we get

D1k Dk Dijk  Dgjk
b1, ikt Lk -+ 1 |- (63)
2 HEAR AL Ak ALjk

Substituting from Eq. (63) into Eqgs. (49) and (51), respectively, we obtain the desir
expression for the face-area flux component on a boundary face,

D1,k
foi=—fjx= AL ]< K (@156 — 95x); 64)
3.1

WhereA%,jﬁk is given by Eq. (59) evaluated with= 0 and Eq. (62). This completes the
derivation of the approximate cell-center diffusion scheme used to precondition the f
cell-center/face-center scheme.

To summarize:

e The preconditioning system is obtained simply by setting the off-diagonal elements
the S-matrices to zero.

e Having diagonaG-matrices enables the face-center intensities to be locally eliminate
resulting in a pure 7-point cell-center diffusion discretization on the mesh interior that
given by Eq. (60). Equations (57) and (64) together with their analogs for the Bottom/T
and Down/Up face-area fluxes are used in conjunction with the balance equation to ob
the analogue of Eq. (60) for boundary cells.

e Once the reduced system has been solved for the cell-center intensities, the f
center intensities can be directly calculated. In particular, Eg. (56) and its analogues
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the Bottom/Top and Down/Up faces are used to calculate the face-center intensities or
mesh interior, while Eq. (63) and its analogues for the Bottom/Top and Down/Up faces
used to calculate the face-center intensities on the outer mesh boundary.

Since theS-matrices are rigorously diagonal when the mesh is orthogonal, it follows th
the preconditioning system is identical to the full cell-center/face-center system whene
the mesh is orthogonal. Thus, our preconditioner can be expected to be very effective if
mesh is not too skewed. Our preconditioning system costs much less to solve than the
system because the coefficient matrix of the reduced cell-center preconditioning sys
has roughly one-fourth as many rows and one-sixth as many elements as the full «
center/face-center coefficient matrix. Computational results presented in the next sec
confirm this expectation.

When the 7-point system is used for preconditioning purposes, an inhomogeneous sc
term (actually a residual) will generally appear in both the cell-center and face-cer
intensity equations. We did not include such a source in our derivation of the face-cel
intensity equations because they do not appear in standard calculations. One must reme
to include these sourcdmforethe face-center intensities are locally eliminated to obtai
the 7-point cell-center system. This matter is extensively discussed for the 2-D case in

It can be shown that the cell-center/face-center preconditioning system and the red:
cell-center system are both SPD and monotone. For instance, the demonstration of the
property given in the Appendix for the full cell-center/face-center system also applies
the preconditioner. Monotonicity is fairly easy to demonstrate once it is recognized that
“ A-coefficients” defined by Egs. (53), (54), (59), and (62) are always positive. This folloy
from the structure of th&matrices shown in Eq. (20).

5. COMPUTATIONAL RESULTS

In this section we perform four sets of calculations. The first, second, and third s
demonstrate convergence properties of our method on both well-behaved nonsmooth
and ill-behaved highly skewed nonsmooth grids. The fourth set of calculations demonstr
the effectiveness of our preconditioner as a function of mesh skewness.

There are two types of meshes used in all four sets of calculations: randomized
Kershaw-squared. Every mesh geometrically models a unit cube, and the outer surfac
each mesh conforms exactly to the outer surface of that cube.

Each randomized mesh is generated from an orthogonal mesh composed of unif
cubic cells having a characteristic length,In particular, each orthogonal-mesh vertex is
randomly and uniformly relocated within a sphere of radigysvhererg = 0.251, that is
centered about the vertex. These randomized meshes are both nonsmooth and skewe
these properties are approximately constant independent of the mesh size. These mest
intended to be representative of nonorthogonal meshes that are nonsmooth and skewe
relatively well-behaved. Any scheme that performs well on such meshes should certa
be expected to perform well on smooth meshes. The exterior of the randomized meshe
orthogonal because only the interior mesh points are randomized. The interior of a cl
randomized mesh is illustrated in Fig. 7.

The Kershaw-squared meshes are a 3-D variation on the 2-D Kershaw meshes that
appearedin[12]. The exteriors of a 0.0 x 10 Kershaw-squared mesh and a200 x 20
Kershaw-squared mesh are illustrated in Figs. 8 and 9, respectively. The interior c
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FIG. 7. Interior view of a portion of a 1 10 x 10 random mesh.

10x 10 x 10 Kershaw-squared mesh illustrated in Fig. 10. By comparing Figs. 8 and 9
can be seen that the Kershaw-squared meshes become increasingly nonsmooth and s
as the mesh size (the number of mesh cells) is increased. Thus, they are represen
of severely distorted and highly ill-behaved meshes, and they provide a severe test
hexahedral-mesh discretization schemes.

We have performed test calculations using 3-D meshes for problems with either a :
dependence or a full 3-D dependence. We make use of 1-D problems simply bece
analytic benchmarks are far easier to obtain in 1-D and have often been used in the pa
test multidimensional diffusion discretizations [2, 4, 10, 12]. It is important to recogniz
that the 3-D accuracy of our discretization is in fact being tested in problems with a 1
dependence because the randomized and Kershaw-squared meshes do not reflect tf
symmetry of the solution.

We have computationally compared our support-operators method with another dif
sion discretization method, which we call the MH method [13]. This method represent
generalization of the 2-D MDHW method [14] to 3-D unstructured hexahedral meshes. T
MH method is very similar to our support-operators method. It has the same set of disci
unknowns, and the same discretization for the balance equation. The MH method dif

/
‘

FIG. 8. External view of a 10x 10 x 10 Kershaw-squared mesh.
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FIG. 9. External view of a 20x 20 x 20 Kershaw-squared mesh.

from our method only in the computation of the fluxes from the intensities. The main advs
tage of the MH scheme relative to our support-operators scheme is that it exactly prese
linear homogeneous solutions. This is a direct consequence of the fact that the MH
expression is exact for a linear intensity dependence. Another slight advantage is tha
MH face-center intensity equations have an 11-point stencil rather than the 13-point ste
of our method. The main disadvantage of the MH method relative to our method is the
generates a nonsymmetric coefficient matrix.
The problem associated with the first set of calculations can be described as
—D(z)%‘z = QZ, (65)

for z € [0, 1], where

D(2) = {Dl, forz € [0, 0.5], (66)

D,, forze[0.5,1],

with a reflective boundary condition at= 0, a Marshak vacuum boundary condition at

z=1,andwherd; = 3—10, D, = % andQ = 1. We referto this problem as the two-material

FIG. 10. Interior view of a portion of a 16« 10 x 10 Kershaw-squared mesh.
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problem. This problem has a material discontinuityat 0.5. The exact solution to the
two-material problem is

a+b+ ¢zt forze[0,0.5], 67)
a4+, forz € [0.5, 1.0],
where
Q(1+8Dy) Q(D2 — Dy) Q Q
a=— b=---- =—— C=—— 68
12D, 192D,D, = 12D, * 12D, (68)

This problem is solved in 3-D on a unit cube having the vacuum boundary condition on ¢
side of the cube together with reflecting conditions on the remaining five sides.

We have performed a set of calculations for the two-material problem using both ¢
support-operators method and the MH method with grids of the following sizes4 &«
4,8x 8x 8,16x 16 x 16, 32x 32 x 32,45x 46 x 46, and 54x 54 x 54. The material
discontinuity was only approximately represented on these meshes because all vertice
the mesh interior were randomized. The relativentensity error was computed for each
calculation. This error is defined as thenorm of the difference between the vector of exact
cell-center intensities and the vector of computed cell-center intensities divided hy the
norm of the vector of exact cell-center intensities, fi@exact— Pcomputed|2/ l| Pexactl2- The
errors are plotted as a function of average cell length in Fig. 11 for our support-operat
method together with a linear fit to the logarithm of the error as a function of the logarithm
the average cell length. The slope of this linear fitis 1.98. Perfect second-order converge
corresponds to a slope of 2.0. Thus, our support-operators diffusion scheme converges
second-order accuracy for the two-material problem on randomized meshes. The el
for the MH scheme are given in Fig. 12 together with a linear fit. The slope of the fit

10" .
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FIG.11. Convergence data and least-squares linear fit for the support-operators method and the two-mat
problem.
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FIG. 12. Convergence data and least-squares linear fit for the MH method and the two-material problem

1.96. Thus, the MH method also converges with second-order accuracy for the two-mate
problem on randomized meshes.

In order to determine the sensitivity of the support-operators method to large jump:s
the diffusion coefficient, we performed an additional set of calcultions for this proble
with D; = ﬁ rather thanD; = 3—10. The errors for the support-operators scheme ar
given in Fig. 13 together with a linear fit. The slope of the fit is 1.96. Thus, second-orc
convergence is maintained even with a large jump in the diffusion coefficient. It can be s
by comparing Figs. 11 and 13 that the errors are larger with a larger jump in the diffus
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FIG. 13. Convergence data and least-squares linear fit for the support-operators method and the two-ma
problem with a large coefficient jump.
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FIG. 14. Convergence data and least-squares linear fit for the MH method and the two-material problem v
a large coefficient jump.

coefficient. The errors for the MH scheme are given in Fig. 14 together with a linear fit. T
slope of the fit is 1.96. Thus, the MH method also maintains second-order accuracy v
a large coefficient jump. A comparison of Figs. 12 and 14 shows a similar increase in
error with a larger jump in the diffusion coefficient.

The problem associated with the third set of calculations has full 3-D dependence :
can be described as

—V.DV¢ = Q, (69)

fort € [0, 1] x [0, 1] x [0, 1], with Marshak boundary conditions on every face having the
extrapolated intensities

0.y, = 9°1y, 2 = (SlyA—y) + 20~ 2], (70)
9%(x,0,2) = ¢°(x,1,2) = 6%[)((1 —X) +z(1- 2)], (71)
P°(X,y, 0 = ¢%(x,y, 1) = %[X(l -xX)+yd-yl, (72)

whereD = 3—10 and Q = 1. We refer to this problem as the 3-D problem. The solution tc
the 3-D problem is

¢ = +%[x(l—x)+y(l—y)+2(l—2)]. (73)

w|O

We have performed a set of calculations using both the support-operators and MH mett
for the 3-D problem with both randomized and Kershaw-squared meshes of the follow
Sizes:4x 4 x 4,8x 8 x 8,16x 16 x 16, 32x 32 x 32, 45x 45 x 45, and 54x 54 x 54.
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FIG. 15. Convergence data and least-squares linear fit for the support-operators method and the 3-D pro
on random meshes.

The relativel , intensity error was computed for each calculation. The errors are plott
for the support-operators method on randomized meshes in Fig. 15 together with a lir
fit to the data. The slope of the fit is 1.97. Thus, our support-operators method convel
with second-order accuracy for this problem. The errors are plotted for the MH method
randomized meshes in Fig. 16 together with a linear fit to the data. The slope of the fi
2.0. Thus, the MH scheme also converges with second-order accuracy for this problen

The errors for the 3-D problem are given for both the support-operators method and
MH method on Kershaw-squared meshes in Table |. There is too much noise in the (
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FIG. 16. Convergence data and least-squares linear fit for the MH method and the 3-D problem on ranc
meshes.
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TABLE |
Convergence of the Support-Operators and MH Methods for the 3-D Problem
on Kershaw-Squared Meshes

Mesh Scheme Error Slope
4x4x4 SO 5.61x 102 —
8x8x8 SO 1.85x 1072 1.60

16 x 16 x 16 SO 7.05x 1072 1.39
32x32x 16 SO 1.99x 103 1.82
45 x 45 x 45 SO 1.10x 102 1.74
54 x 54 x 54 SO 8.56x 104 1.38
4x4x4 MH 2.56x 1072 —
8x8x8 MH 3.39x 102 -0.4
16 x 16 x 16 MH 9.64x 1073 1.81
32x 32x 16 MH 1.56x 1073 2.63
45 x 45 x 45 MH 7.96x 10 1.97
54 x 54 x 54 MH 6.20x 10 1.37

2 This column contains the slope of a two-point linear fit calculated using only the data for the mesh
assigned the slope value and the data for the next-smallest mesh. For instance, the slope given for the
16 x 16 x 16 mesh was calculated using the data from the calculations for the 6x 16 mesh
and the 8x 8 x 8 mesh.

to do a reliable linear fit for either scheme. It is clear from the data in Table | that bo
the support-operators and MH schemes are converging at a rate faster than first-orde
slower than second-order. Thus, the convergence of both schemes is degraded on Ker:
squared meshes relative to the convergence obtained on randomized meshes. This
surprising since the Kershaw-squared meshes are extremely skewed and grow increas
skewed as the mesh is refined, whereas the randomized meshes have a relatively fixed
of skewing.
The problem associated with the fourth set of calculations can be described as

_p?_

- = Q7. (74)

for z € [0, 1], with Marshak vacuum boundary conditionszat 0 andz = 1, and where

D= 3—10, andQ = 1. We refer to this problem as the homogeneous problem. The homo
neous problem is solved in 3-D on a unit cube by having the vacuum boundary conditi
on two opposing sides of the cube with reflecting conditions on the remaining four sid
We have performed calculations for this problem using both random and Kershaw-sque
meshes in conjunction with two different solution techniques. The first is to apply ro
and column scaling to the coefficient matrix and then to solve the resulting system us
the conjugate-gradient method in conjunction with symmetric successive overrelaxat
(SSOR) for preconditioning. We refer to this as the one-level solution technique. The s
ond is to apply row and column scaling to the coefficient matrix and then solve the result
system using the conjugate-gradient method in conjunction with the low-order 7-po
cell-center diffusion scheme for preconditioning. We refer to this as the two-level soluti
technique. The low-order equations are solved by first applying row and column scal
to the low-order coefficient matrix and then using the conjugate-gradient method in c
junction with SSOR preconditioning. Note that the low-order system is solved once
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TABLE Il
Comparison of One-Level and Two-Level Solution Techniques

FS Max LO CPU time
Technique Mesh type iterations iterations (sec)
One-Level Random 97 — 143.24
Two-Level Random 7 32 61.53
One-Level Kershatv 175 — 247.17
Two-Level Kershaw 46 42 352.91

full-system conjugate-gradient iteration. The total conjugate-gradient iterations requi
for the full system, the maximum iterations required for the low-order system, and the tc
CPU time are given for each calculation in Table Il. It can be seen from Table Il that t
two-level solution technique takes 14 times fewer full-system iterations than the one-le
solution technigue on the random mesh, but it takes only about 3.5 times fewer full-sys
iterations on the Kershaw-squared mesh. This is expected since the low-order schem
comes increasingly inaccurate relative to the full scheme as the mesh becomes increas
skewed. Note that the two-level scheme is faster than the one-level scheme on the rar
mesh, but it is slower than the one-level scheme on the Kershaw-squared mesh. The
crease in CPU times for the two-level scheme will be very dependent upon the method t
to solve the low-order system. For instance, rather than solve the low-order system
high level of precision using a Krylov method, one might simply perform a fixed numbi
of multigrid V-cycles. This would greatly reduce the cost of the preconditioning step a
thereby reduce the total CPU time as well. Such a strategy was employed with great be
in [2]. It is important to realize that the structure of the low-order cell-center system
structured meshes is compatible with standard multigrid methods such as Dendy’s me
[15], whereas the full system has a structure that is incompatible with standard methe
Thus, the low-order preconditioning approach enables highly efficient solution techniq
to be used in an indirect manner when they cannot be directly applied to the full systen

6. SUMMARY AND FUTURE WORK

We have developed a cell-centered support-operators diffusion discretization for unst
tured hexahedral meshes with spatially-discontinuous diffusion coefficients that produ
a sparse symmetric positive-definite coefficient matrix and yields second-order con
gence on nonsmooth randomized meshes. We believe that second-order convergen
nonsmooth randomized meshes implies second-order convergence on any type of “v
behaved” nonsmooth meshes, but without a rigorous mathematical proof of converge
“well-behaved” must remain a subjective concept. Our scheme properly treats mate
discontinuities in that the normal component of the flux is continuous across such discc
nuities and the transverse component may be discontinuous. The main disadvantage c
method is the need for face-center intensities in addition to cell-center intensities. This
advantage is mitigated by the use of a low-order diffusion discretization as a preconditic
that is symmetric positive-definite and monotone, and has only cell-center intensitie:
the coefficient matrix. Our support-operators discretization is very similar to hybrid mixi
finite-element diffusion discretizations. However, our approach does not require the us
basis functions. Most importantly, current hybrid mixed finite-element methods appeal
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require a certain degree of mesh smoothness to be convergent. For these reasons, we fe
our method represents a valuable and unique alternative to existing diffusion discretiza
schemes for nonorthogonal hexahedral meshes.

There are several possibilities for improving our method. One could certainly reduce
size of the coefficient matrix by locally eliminating the cell-center unknowns. However, th
elimination must be done computationally since the matrix elements for our method h:
to be obtained computationally. Our method would probably best benefit from an improy
preconditioner for highly skewed meshes. There are several candidate schemes thz
intend to investigate in the future.

APPENDIX

The purpose of this appendix is to demonstrate that the coefficient matrix for our supp:
operators method is symmetric positive-definite (SPD). This is achieved in the followi
manner. First, we demonstrate that Wematrix is SPD. Next, we show that the coefficient
matrix for a single-cell problem with reflective boundary conditions is symmetric positive
semidefinite (SPS) with a one-dimensional null space consisting of any set of spati
constant intensities. At this point, the demonstration becomes perfectly analogous to
givenin[2]forthe 2-D case. We conclude the 3-D demonstration by giving a brief descripti
of the final steps. The full details of these steps are given in [2].

The following mathematical preliminaries are discussed in [9]. A majiis symmetric
if and only if

B = B! (A.1)

A matrix, B, is SPD if and only if it is symmetric and it satisfies
X'BX > 0, for all vectorsX. (A.2)

A matrix, B, is SPS if and only if it is symmetric and it satisfies
X'BX >0, for all vectorsX. (A.3)

Thus, every SPD matrix is also SPS. Assume that a square ntican be expressed in
terms of a square matriX, as

B=KK. (A.4)

Then ifK is not invertible B is SPS but not SPD, andHf is invertible,B is SPD.

We begin the overall demonstration by showing that the matrix given in Eq.\(81s
SPD. It suffices to show that its inverse, explicitly given by Eq. (27) and its analogues,
SPD. We begin the construction W ~* by considering Eq. (26) and the S-matrices thal
appear in it. Each of the S-matrices is a&33 matrix that is uniquely associated with a
vertex, and each of these matrices operates on a 3-vector composed of the face-are:
components associated with that vertex. We now re-express theserBatrices as & 6
matrices by having them operate on a vector composed of all six face-area flux compon
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associated with the cell. For instance, the ma8iX® operates on the following vertex
face-area flux vector:

FLBD — (fL B fD)L, (A.5)
We want to redefin&-BP so that it operates on the global vector of flux components:
F=(f" R fB §T §0 Uyt (A.6)

This is easily accomplished via a>3 6 matrix that we denote &-5P. In particular, the
6 x 6 version ofS-BP js given by

SIéEIg — F)LBDt SLBDPLBD’ (A.7)
where

PP =PI =PI = 1 48)

and all other elements &-EP are zero. The matriSEL is explicitly given by

(st 0 stg O sip O]
0 0 0 0 0 O
pLBD' gLBDpPLBD _ Ser 0 sss 0 ssp O . (A.9)
0 0 0 0 0 O
sp. 0 spg O spp O
L 0O 0 0 0 0 0

For the general case, the matis most easily defined with respect to the masinsing

numeric indices. To do this we simply number all vector components in the usual sequer
manner, e.g.,

(fh B D) — (fy, fo, fa)', (A.10)
and
(FH FROEBFT P fUY — (fy, T, f3, fa, T5, fo)". (A.11)

Using this numeric indexing, the matriXis defined for the general case as follows: If the
i'th component of the local vectdi'e"®*associated witls’®"®*is thej'th component of the
global vectorF, then

Pi,j = 1, (A.12)

otherwise

pi,j =0. (A.13)
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It is convenient at this point to assign the vertices with the indices LBD, RBD, LTD, RTL
LBU, RBU, LTU, RTU, to the respective numeric indices 1, 2, 3, 4, 5, 6, 7, 8. This enabl
us to re-express Eq. (26) as

8
H'd+ DY VWH'PLS P = H'(¢°1), (A.14)

n=1

wheren is the numeric vertex index, and where

1=(1,1,111 1, (A.15)
d = (¢", ¢R, ¢8 ¢T, ¢°, V)", (A.16)
H = (h", hR hB hT, hP, hY)t. (A.17)

Since Eq. (A.14) must hold for all possil#t, it follows that

d+D?

8
> vnPtnsnPn] F = ¢cl. (A.18)

n=1

Further manipulating Eq. (A.18), we obtain

Dfl
n=1

8
> VnPLSnPn] F=Ad, (A.19)
whereA® is defined by Eq. (30). Comparing Egs. (28) and (A.19) it follows that

wt=D"

n=1

8
> vnP;sth] . (A.20)

From Eq. (20) it follows that each 8 3 S-matrix is the product of a matriA and its
transpose. Substituting from Eq. (20) into Eg. (A.20), we get,

’

8
wl=p1 lz VaPLALA P,
n=1

8
=D [Z Va(AnPn) (AP | . (A.21)

n=1

Since

the matrix,(A,Pn)' (A,Py), must be SPS for each valuergf

an SPS matrix multiplied by a positive scalar remains SPS,

the diffusion coefficient will always be positive,

the vertex volumes will be positive with any reasonably well-formed mesh,
the A-matrices will be invertible with any well-formed mesh,

the P-matrices are not invertible,
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it follows from Eq. (A.21) thaM , must be SPS but not SPD for each valu@ofvhere
Mp = D™ Vo(AnP) (ARPy). (A.22)

Substituting from Eq. (A.22) into Eq. (A.21) we find that—! is a sum of matrices with
each constituent matridl ,, being SPS:

wl= ZM”' (A.23)

It is shown in [2] that if a matrix is a sum of SPS matrices, it is SPS, and its null space
the intersection of the null spaces of the constituent matrices. From the definitions of
A-matrices and th®-matrices (see Egs. (18), (A.12), and (A.13)), it follows that dch
matrix has a three-dimensional null space. For instance, the null spisigg obérresponding

to the LBD corner) consists of any vector of the form

F=(,fR o0, 7,0 fY, (A.24)

where fR fT, and fY are free to take on any values. There is no one face-area fl
component that is common to the null spaces of all dighhatrices, so the intersection of

their null spaces is the null set. This implies thét* has an empty null space. Since it is
also SPS, it follows thatv—* is SPD. Finally, ifw ! is SPD, thelW must be SPD.

The next step in the demonstration is to construct the discrete diffusion equations f
single cell with reflective boundary conditions. Let us assume a solution végtof, the
form given in Eg. (A.16). In order to use numeric indices for the coefficient matrix of t
single-cell system, we number this vector in the usual manner, i.e.,

(0", 0% 0B, 07, 90, ¢V, 6°) — (#1, P2, b3, Pa, b5, P6, P7)" (A.25)

The first six equations for a single cell are the equations for the face-center intensit
For a reflective boundary condition, these equations simply state that the face-area
component on each face is zero. However, in analogy with Egs. (41) through (43),
equivalently require that theegativeof each component be zero. TWematrix relates the
face-area flux components to the differences between the cell-center intensity and the
center intensities in accordance with Eq. (31). Thus the first six equations can be expre
in terms of the matrixV as

—WAD =0, (A.26)
where in accordance with Egs. (30) and (A.25),

A® = (¢p7 — b1, $7 — P2, 7 — b3, $7 — Pa, b7 — b5, h7 — ). (A.27)

Using Egs. (A.26), and (A.27), one can easily construct the first six rows of the single-c
coefficient matrixC, as follows:

=W, i=16 j=186, (A.28)

6
Gr=-> Wi, i=168 (A.29)
j=1



370 MOREL, HALL, AND SHASHKOV

The seventh and last row @f corresponds to Eq. (34), the steady-state balance equatic
Using Egs. (31), (34), and (A.27) through (A.29), we define the last row of the coefficie
matrix:

C7j = _Zwi‘j’ i=16 (A30)

6 6
Crr=_ Y Wi (A.31)
To summarize, the coefficient matrix takes the block form

W W,
C= , (A.32)
WC WI'C

whereW, is a 6x 1 matrix obtained by summing the rows \8f, W, is a 1x 6 matrix
obtained by summing the columnswf, andW,. isa 1x 1 matrix obtained by summing all
of the elements ofV. Note thatW, is the transpose &V, becaus&V is symmetric. Thus,

C is symmetric. To prove that it is SPS, we need only show that it is positive-semidefini
Toward this end, we note that any vectbican clearly be re-expressed as

® = (¢1, ¢2, ¢3, Pa, 5, b6, $7)' = P 1 + Do, (A.33)
where
Ot = (¢ — $7, b2 — ¢7, $3 — b7, s — $7, b5 — 7, $6 — $7, 0, (A.34)
and
D¢ = (¢7, ¢7, ¢7. 7, 67, 7, 7)". (A.35)

Taking the inner product op with Cd, we get
(Dt + D)'C(Dt + Do) = DY CD¢ + PYCD + PLCD¢ + PLCD..  (A.36)
It is easily verified that
Cod. =0, foralld.. (A.37)
Substituting from Eq. (A.37) into Eq. (A.36), we get
(B + ®)IC(Dt + Do) = D, ChD( + DLCD;. (A.38)
Since

PLCh = DL Cl'd, =0, (A.39)
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Eq. (A.38) reduces to
(@t + D)'C(Pt + D) = D Chy. (A.40)
Using Eq. (A.32), itis easily shown that
PLCD; = DY WDy, (A.41)
where

Dio = (¢1 — P7. 2 — $7. b3 — b7, P4 — 7. b5 — b7, P — P7)". (A.42)
SinceW is SPD, it follows from Egs. (A.40) through (A.42) that

(Dt + D)'C(Dt + de) =0, if D =0,
> 0, otherwise (A.43)

Thus,C is positive-semidefinite. Since itis also symmet@iéis SPS. Note from Eq. (A.43)
that the null space o is spanned by all vectogs.. Following Eq. (A.35), it is clear that
the null space o€ is spanned by all vectors of constant intensity.

The remainder of the demonstration is identical to that given for the 2-D case in [2]. T
final steps can be briefly described as follows:

1. Given a multicell mesh witiN cells, theC-matrices for each cell are expanded to
operate on the global vector of intensities for the entire mesh. This step is conceptu
analogous to the expansion of t8€P matrix given in Eq. (A.9). Since th&-matrices are
SPS, their expansions must be SPS.

2. Itis shown that the sum of the expandeanatrices represents the coefficient matrix
for the entire mesh with reflective conditions on the outer boundary faces. Since the glc
coefficient matrix is the sum of SPS matrices, it must be SPS. Furthermore, the null s
of the full coefficient matrix must be equal to the intersection of the null spaces of t
expandedC-matrices.

3. Itis shown that the null space of the full coefficient matrix is spanned by all vectors
constantintensity. This is the correct result because the analytic diffusion operator has a
space spanned by all constant intensity functions if the reflective condition isimposed or
entire outer boundary. The analytic diffusion operator becomes invertible if the reflect
condition is replaced with an extrapolated boundary condition on any portion of the ou
boundary surface.

4. Finally, it is shown that if the reflective boundary condition is replaced with an e
trapolated condition on any outer-boundary cell face, the expa@daatrix for the cell
containing the boundary face has a null space that is disjoint from the null spaces of all
other expande-matrices. Thus, the intersection of the null spaces of all the expand
C-matrices is the null set. Since the global coefficient matrix is the sum of the expanc
C-matrices, and the expand€idmatrices are SPS, it follows that the global coefficient
matrix is SPD.
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